Solution :
We have, I = \(sec^{-1}\sqrt{x}\) dx
Let x = \(sec^2t\)
dx = \(2sec^2 t tan t\) dt
I = t.\(2sec^2 t tan t\) dt
u = t and v = \(tan^2 t\)
I = \(\int\) u.dv = u.v – \(\int\) v.du = \(t.tan^2 t\) – \(\int\) \(tan^2 t\) dt
I = \(t.tan^2 t\) – \(\int\) \(sec^2 t – 1\) dt
I = \(t.tan^2 t\) – \(\int\) \(sec^2 t\) + \(int\) 1 dt
I = \(t.tan^2 t\) – tan t + t + C = \(t.sec^2 t\) – tan t + C
I = \(xsec^{-1}\sqrt{x}\) – \(\sqrt{sec^2t – 1}\) + C
I = \(xsec^{-1}\sqrt{x}\) – \(\sqrt{x – 1}\) + C
Similar Questions
What is the integration of cos inverse root x ?
What is the integration of x cos inverse x ?
What is integration of sin inverse cos x ?