## Solution :

first we choose 4 numbers from 12 numbers, then 4 from remaining 8 numbers, and then 4 from remaining 4 numbers

So, Required number of ways

= \(^{12}C_4\) x \(^8C_4\) x \(^4C_4\)

= \(12!\over (4!)^3\)

### Similar Questions

How many different words can be formed by jumbling the letters in the word ‘MISSISSIPPI’ in which no two S are adjacent ?

From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is

There are 10 points in a plane, out of these 6 are collinear. If N is the number of triangles formed by joining these points, then

Let \(T_n\) be the number of all possible triangles formed by joining vertices of an n-sided regular polygon. If \(T_{n+1}\) – \(T_n\) = 10, then the value of n is

From a group of 10 persons consisting of 5 lawyers, 3 doctors and 2 engineers, four persons are selected at random. The probability that selection contains one of each category is