Maths Questions

Find the normal to the hyperbola \(x^2\over 16\) – \(y^2\over 9\) = 1 whose slope is 1.

Solution : We have, \(x^2\over 16\) – \(y^2\over 9\) = 1 Compare given equation with \(x^2\over a^2\) – \(y^2\over b^2\) = 1 a = 4 and b = 3 Since the normal to the given hyperbola whose slope is ‘m’, is  y = mx \(\mp\) \({m(a^2+b^2)}\over \sqrt{a^2 – m^2b^2}\) Hence, required equation of normal is …

Find the normal to the hyperbola \(x^2\over 16\) – \(y^2\over 9\) = 1 whose slope is 1. Read More »

The foci of an ellipse are \((\pm 2, 0)\) and its eccentricity is 1/2, find its equation.

Solution : Let the equation of the ellipse be \(x^2\over a^2\) + \(y^2\over b^2\) = 1. Then, coordinates of the foci are \((\pm ae, 0)\). Therefore,  ae = 2 \(\implies\)  a = 4 We have \(b^2\) = \(a^2(1 – e^2)\) \(\implies\) \(b^2\) =12 Thus, the equation of the ellipse is \(x^2\over 16\) + \(y^2\over 12\) …

The foci of an ellipse are \((\pm 2, 0)\) and its eccentricity is 1/2, find its equation. Read More »

Find the equation of the ellipse whose axes are along the coordinate axes, vertices are \((0, \pm 10)\) and eccentricity e = 4/5.

Solution : Let the equation of the required ellipse be \(x^2\over a^2\) + \(y^2\over b^2\) = 1                 ……….(i) Since the vertices of the ellipse are on y-axis. So, the coordinates of the vertices are \((0, \pm b)\). \(\therefore\)    b = 10 Now, \(a^2\) = \(b^2(1 – e^2)\)  …

Find the equation of the ellipse whose axes are along the coordinate axes, vertices are \((0, \pm 10)\) and eccentricity e = 4/5. Read More »

If p is the length of the perpendicular from the origin to the line \(x\over a\) + \(y\over b\) = 1, then prove that \(1\over p^2\) = \(1\over a^2\) + \(1\over b^2\)

Solution : The given line is bx + ay – ab = 0 ………….(i) It is given that p = Length of the perpendicular from the origin to line (i) \(\implies\) p = \(|b(0) + a(0) – ab|\over {\sqrt{b^2+a^2}}\) = \(ab\over \sqrt{a^2+b^2}\) \(\implies\) \(p^2\) = \(a^2b^2\over a^2+b^2\) \(\implies\) \(1\over p^2\) = \(a^2+b^2\over a^2b^2\) \(\implies\) \(1\over …

If p is the length of the perpendicular from the origin to the line \(x\over a\) + \(y\over b\) = 1, then prove that \(1\over p^2\) = \(1\over a^2\) + \(1\over b^2\) Read More »

Find the distance between the line 12x – 5y + 9 = 0 and the point (2,1)

Solution : We have line 12x – 5y + 9 = 0 and the point (2,1) Required distance = |\(12*2 – 5*1 + 9\over {\sqrt{12^2 + (-5)^2}}\)| = \(|24-5+9|\over 13\) = \(28\over 13\) Similar Questions If p is the length of the perpendicular from the origin to the line \(x\over a\) + \(y\over b\) = …

Find the distance between the line 12x – 5y + 9 = 0 and the point (2,1) Read More »

Let \(a_n\) be the nth term of an AP. If \(\sum_{r=1}^{100}\) \(a_{2r}\) = \(\alpha\) and \(\sum_{r=1}^{100}\) \(a_{2r-1}\) = \(\beta\), then the common difference of the AP is

Solution : Given, \(a_2 + a_4 + a_6 + …… + a_{200}\) = \(\alpha\)      ………(i) and \(a_1 + a_3 + a_5 + ….. + a_{199}\) = \(\beta\)           ………(ii) On subtracting equation (ii) from equation (i), we get (\(a_2 – a_1\)) + (\(a_4 – a_3\)) + ……… + (\(a_{200} – …

Let \(a_n\) be the nth term of an AP. If \(\sum_{r=1}^{100}\) \(a_{2r}\) = \(\alpha\) and \(\sum_{r=1}^{100}\) \(a_{2r-1}\) = \(\beta\), then the common difference of the AP is Read More »