What is the General Solution of \(Tan \theta\) = 0 ?

Solution :

The general solution of \(tan \theta\) = 0 is given by \(\theta\) = \(n\pi\), n \(\in\) Z.

Proof :

We have,theta

\(tan \theta\) = \(PM\over OM\)

\(\therefore\)   \(tan \theta\) = 0

\(\implies\)  \(PM\over OM\) = 0

\(\implies\) PM = 0

\(\implies\)  OP coincides with OX or OX’

\(\implies\)  \(\theta\) = 0, \(\pi\), \(2\pi\), ….., \(-\pi\), \(-2\pi\), \(-3\pi\), ….

\(\implies\) \(\theta\) = \(n\pi\),  n \(\in\) Z

Hence, \(\theta\) = \(n\pi\),  n \(\in\) Z is the general solution of \(tan \theta\) = 0.

Leave a Comment

Your email address will not be published.