Solution :
\({\sigma^2}\) = \(\sum(x_i – \bar{x})^2\over n\)
\(\bar{X}\) = \(\sum x_i\over n\)
= \(2 + 4 + 6 + 8 + ….. + 100\over 50\)
= 51
\({\sigma^2}\) = \(2^2 + 4^2 + …. + 100^2\over 50\) – \(51^2\)
= 833
\({\sigma^2}\) = \(\sum(x_i – \bar{x})^2\over n\)
\(\bar{X}\) = \(\sum x_i\over n\)
= \(2 + 4 + 6 + 8 + ….. + 100\over 50\)
= 51
\({\sigma^2}\) = \(2^2 + 4^2 + …. + 100^2\over 50\) – \(51^2\)
= 833