\(sin5x + sin2x – sinx\over {cos5x + 2cos3x + 2cos^x + cosx}\) is equal to

Solution :

L.H.S. = \(2sin2xcos3x + sin2x\over{2cos3x.cos2x + 2cos3x + 2cos^2x}\)

= \(sin2x[2cos3x+1]\over {2[cos3x(cos2x+1)+(cos^2x)]}\)

= \(sin2x[2cos3x+1]\over {2[cos3x(2cos^2x)+(cos^2x)]}\)

= \(sin2x[2cos3x+1]\over {2cos^2x(2cos3x+1)}\) = tanx


Similar Questions

Evaluate sin78 – sin66 – sin42 + sin6.

If A + B + C = \(3\pi\over 2\), then cos2A + cos2B + cos2C is equal to

Find the maximum value of 1 + \(sin({\pi\over 4} + \theta)\) + \(2cos({\pi\over 4} – \theta)\)

Prove that \(2cos2A+1\over {2cos2A-1}\) = tan(\(60^{\circ}\) + A)tan(\(60^{\circ}\) – A)

Leave a Comment

Your email address will not be published.