What is the integration of x cos inverse x ?

Solution :

We have, I = \(\int\)  \(x cos^{-1} x\) dx

By using integration by parts formula,

I = \(cos^{-1} x\) \(x^2\over 2\) – \(\int\) \(-1\over \sqrt{1 – x^2}\) \(\times\) \(x^2\over 2\) dx

I =  \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 2\) \(\int\) \(-x^2\over \sqrt{1 – x^2}\) dx

= \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 2\) \(\int\) \(1 – x^2 – 1\over \sqrt{1 – x^2}\)  dx

= \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 2\) { \(\int\) \(1 – x^2\over \sqrt{1 – x^2}\) – \(\int\) \(1\over \sqrt{1 -x^2}\) } dx

\(\implies\) I = \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 2\) { \(\int\) \(\sqrt{1 – x^2}\) – \(\int\) \(1\over \sqrt{1 -x^2}\) } dx

By using integration formula of \(\sqrt{a^2 – x^2}\),

\(\implies\) I = \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 2\) [{ \(1\over 2\) \(x\sqrt{1 – x^2}\) – \(1\over 2\) \(sin^{-1} x\) } – \(sin ^{-1} x\) ] + C

\(\implies\) I = \(x^2\over 2\) \(cos^{-1} x\) –  \(1\over 4\) \(x\sqrt{1 – x^2}\) + \(3\over 4\) \(sin^{-1} x\) + C


Similar Questions

What is the integration of cos inverse root x ?

What is the integration of sec inverse root x ?

What is integration of sin inverse cos x ?

What is the integration of sin inverse root x ?

What is the integration of sin inverse x whole square ?

Leave a Comment

Your email address will not be published. Required fields are marked *