Solution :
We have, I = \(\int\) \(x cos^{-1} x\) dx
By using integration by parts formula,
I = \(cos^{-1} x\) \(x^2\over 2\) – \(\int\) \(-1\over \sqrt{1 – x^2}\) \(\times\) \(x^2\over 2\) dx
I = \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 2\) \(\int\) \(-x^2\over \sqrt{1 – x^2}\) dx
= \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 2\) \(\int\) \(1 – x^2 – 1\over \sqrt{1 – x^2}\) dx
= \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 2\) { \(\int\) \(1 – x^2\over \sqrt{1 – x^2}\) – \(\int\) \(1\over \sqrt{1 -x^2}\) } dx
\(\implies\) I = \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 2\) { \(\int\) \(\sqrt{1 – x^2}\) – \(\int\) \(1\over \sqrt{1 -x^2}\) } dx
By using integration formula of \(\sqrt{a^2 – x^2}\),
\(\implies\) I = \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 2\) [{ \(1\over 2\) \(x\sqrt{1 – x^2}\) – \(1\over 2\) \(sin^{-1} x\) } – \(sin ^{-1} x\) ] + C
\(\implies\) I = \(x^2\over 2\) \(cos^{-1} x\) – \(1\over 4\) \(x\sqrt{1 – x^2}\) + \(3\over 4\) \(sin^{-1} x\) + C
Similar Questions
What is the integration of cos inverse root x ?
What is the integration of sec inverse root x ?
What is integration of sin inverse cos x ?