Processing math: 100%

Graph of Trigonometric Functions – Domain & Range

Here, you will learn graph of trigonometric functions and domain & range of trigonometric functions.

Graph of Trigonometric Functions :

y = sinx

y = cosx


y = tanx

y = cotx


y = secx

y = cosecx


Values of T-Ratio of some standard angles

Angles
T-Ratio
0 π6 π4 π3 π2 π
sinθ 0 12 12 32 1 0
cosθ 1 32 12 12 0 -1
tanθ 0 13 1 3 N.D 0
cotθ N.D 3 1 13 0 N.D
secθ 1 23 2 2 N.D -1
cosecθ N.D 2 2 23 1 N.D

N.D = Not defined

Domain, Ranges and Periodicity of Trigonometric function

T-Ratio Domain Range Period
sin x R [-1, 1] 2π
cos x R [-1, 1] 2π
tan x R – {(2n+1)π/2; n I} R π
cot x R – {nπ : n I} R π
sec x R – {(2n+1)π/2; n I} (-, -1] [1, ] 2π
cosec x R – {nπ : n I} (-, -1] [1, ] 2π

Trigonometric ratios of some standard angles :

(i)  sin18 = sinπ10 = 514 = cos72 = cos2π5

(ii)  cos36 = cosπ5 = 5+14 = sin54 = sin3π10

(iii)  sin72 = sin2π5 = 10+254 = cos18 = cosπ10

(iv)  sin36 = sinπ5 = 10254 = cos54 = cos3π10

(v)  sin15 = sinπ12 = 3122 = cos75 = cos5π12

(vi)  cos15 = sinπ12 = 3+122 = sin75 = sin5π12

(vii)  tan15 = tanπ12 = 23 = 313+1 = cot75 = cot5π12

(viii)  tan75 = tan5π12 = 2+3 = 3+131 = cot15 = cotπ12

(ix)  tan(22.5) = tanπ8 = 21 = cot(67.5) = cot3π8

(x)  tan(67.5) = tan3π8 = 2+1 = cot(22.5) = cotπ8

Example : Evaluate sin78 – sin66 – sin42 + sin6

Solution : (sin78 – sin66) – (sin42 – sin6-)

= 2cos(60)sin(18) – 2cos(36)sin(30)

= sin18 – cos36

= (514) – (5+14) = 12

Leave a Comment

Your email address will not be published. Required fields are marked *