Here, you will learn graph of trigonometric functions and domain & range of trigonometric functions.
Graph of Trigonometric Functions :

y = sinx

y = cosx

y = tanx

y = cotx

y = secx

y = cosecx
Values of T-Ratio of some standard angles
Angles T-Ratio |
0 | π6 | π4 | π3 | π2 | π |
sinθ | 0 | 12 | 1√2 | √32 | 1 | 0 |
cosθ | 1 | √32 | 1√2 | 12 | 0 | -1 |
tanθ | 0 | 1√3 | 1 | √3 | N.D | 0 |
cotθ | N.D | √3 | 1 | 1√3 | 0 | N.D |
secθ | 1 | 2√3 | √2 | 2 | N.D | -1 |
cosecθ | N.D | 2 | √2 | 2√3 | 1 | N.D |
N.D = Not defined
Domain, Ranges and Periodicity of Trigonometric function
T-Ratio | Domain | Range | Period |
sin x | R | [-1, 1] | 2π |
cos x | R | [-1, 1] | 2π |
tan x | R – {(2n+1)π/2; n ∈ I} | R | π |
cot x | R – {nπ : n ∈ I} | R | π |
sec x | R – {(2n+1)π/2; n ∈ I} | (-∞, -1] ∪ [1, ∞] | 2π |
cosec x | R – {nπ : n ∈ I} | (-∞, -1] ∪ [1, ∞] | 2π |
Trigonometric ratios of some standard angles :
(i) sin18∘ = sinπ10 = √5−14 = cos72∘ = cos2π5
(ii) cos36∘ = cosπ5 = √5+14 = sin54∘ = sin3π10
(iii) sin72∘ = sin2π5 = √10+2√54 = cos18∘ = cosπ10
(iv) sin36∘ = sinπ5 = √10–2√54 = cos54∘ = cos3π10
(v) sin15∘ = sinπ12 = √3−12√2 = cos75∘ = cos5π12
(vi) cos15∘ = sinπ12 = √3+12√2 = sin75∘ = sin5π12
(vii) tan15∘ = tanπ12 = 2–√3 = √3−1√3+1 = cot75∘ = cot5π12
(viii) tan75∘ = tan5π12 = 2+√3 = √3+1√3−1 = cot15∘ = cotπ12
(ix) tan(22.5∘) = tanπ8 = √2−1 = cot(67.5∘) = cot3π8
(x) tan(67.5∘) = tan3π8 = √2+1 = cot(22.5∘) = cotπ8
Example : Evaluate sin78∘ – sin66∘ – sin42∘ + sin6∘
Solution : (sin78∘ – sin66∘) – (sin42∘ – sin6∘-)
= 2cos(60∘)sin(18∘) – 2cos(36∘)sin(30∘)
= sin18∘ – cos36∘
= (√5−14) – (√5+14) = −12