Solution :
We have [→a + →b →b + →c →c + →a]
= {(→a + →b)×(→b + →c)}.(→c + →a)
= {→a×→b + →a×→c + →b×→b + →b×→c}.(→c + →a) {→b×→b = 0}
= {→a×→b + →a×→c + →b×→c}.(→c + →a)
= (→a×→b).→c + (→a×→c).→c + (→b×→c).→c + (→a×→b).→a + (→a×→c).→a + (→b×→c).→a
= [→a →b →c] + 0 + 0 + 0 + 0 + [→b →c →a]
= [→a →b →c] + [→a →b →c] = 2[→a →b →c]
Similar Questions
Find the angle between the vectors with the direction ratios proportional to 4, -3, 5 and 3, 4, 5.
Find dot product of vectors →a = 2ˆi+2ˆj−ˆk and →b = 6ˆi−3ˆj+2ˆk
Find the vector equation of a line which passes through the point A (3, 4, -7) and B (1, -1, 6)