Processing math: 100%

Formulas for Inverse Trigonometric Functions

Here, you will learn formulas for inverse trigonometric functions, equation and inequations involving inverse trigonometric function.

Let’s begin –

Simplified Inverse Trigonometric Functions

(a)  y = f(x) = sin1(2x1+x2) = {2tan1x,if |x|1π2tan1x,if x>1(π+2tan1x),if x<1 

(b)  y = f(x) = cos1(1x21+x2) = {2tan1x,if |x|02tan1x,if x<0

(c)  y = f(x) = tan1(2x1x2) = {2tan1x,if |x|<1π+2tan1x,if x<1(π2tan1x),if x>1

(d)  y = f(x) = sin1(3x4x3) = {(π+3sin1x),if 1x123sin1x,if 12x12π3sin1x,if 12x1

(e)  y = f(x) = cos1(4x33x) = {3cos1x2π,if 1x122π3cos1x,if 12x123cos1x,if 12x1

(f)  y = f(x) = sin1(2x1x2) = {(π+2sin1x),if 1x122sin1x,if 12x12π2sin1x,if 12x1

(g)  y = f(x) = cos1(2x21) = {2cos1x,if 0x12π2cos1x,if 1x0

Example : Prove that : 2tan112 + tan117 = tan13117

Solution : We have, 2tan112 + tan117

= 2tan1(2×121(12)2) + tan117       [ 2tan1x = tan12x1x2]

tan143 + tan117 = tan1[43+17143×17] = tan13117

Equations involving Inverse trigonometric functions

Example : Prove that the equation 2cos1x + sin1x = 11π6 has no solution.

Solution : Given equation is 2cos1x + sin1x = 11π6

cos1x + (cos1x + sin1x) = 11π6

cos1x + π2 = 11π6

cos1x = 4π3

which is not possible as cos1x [0, π]. Hence no solution.

Inequations involving Inverse trigonometric functions

Example : Find the complete solution set of sin1(sin5) > x2 – 4x.

Solution : sin1(sin5) > x2 – 4x     sin1[sin(52π)] > x2 – 4x

x2 – 4x < 5 – 2π     x2 – 4x + 2π – 5< 0

2 – 92π < x < 2 + 92π     x (2 – 92π, 2 + 92π)

Hope you learnt formulas for inverse trigonometric functions, equation and inequations involving inverse trigonometric function, learn more concepts of inverse trigonometric functions and practice more questions to get ahead in competition. Good Luck!

Leave a Comment

Your email address will not be published. Required fields are marked *