Solution :
→a×→b = →c and →b×→c = →a
⟹ →c⊥→a , →c⊥→b and →a⊥→b, →a⊥→c
⟹ →a⊥→b, →b⊥→c and →c⊥→a
⟹ →a, →b, →c are mutually perpendicular vectors.
Again, →a×→b = →c and →b×→c = →a
⟹ |→a×→b| = |→c| and |→b×→c| = |→a|
⟹ |→a||→b|sinπ2 = |→c| and |→b||→c|sinπ2 = |→a| (∵ →a⊥→b and →b⊥→c)
⟹ |→a||→b| = |→c| and |→b||→c| = |→a|
⟹ |→b|2 |→c| = |→c|
⟹ |→b|2 = 1
⟹ |→b| = 1
putting in |→a||→b| = |→c|
⟹ |→a| = |→c|
Similar Questions
Find the angle between the vectors with the direction ratios proportional to 4, -3, 5 and 3, 4, 5.
Find dot product of vectors →a = 2ˆi+2ˆj−ˆk and →b = 6ˆi−3ˆj+2ˆk
For any three vectors →a, →b, →c prove that [→a + →b →b + →c →c + →a] = 2[→a →b →c]
Find the vector equation of a line which passes through the point A (3, 4, -7) and B (1, -1, 6)