\(sin5x + sin2x – sinx\over {cos5x + 2cos3x + 2cos^x + cosx}\) is equal to
Solution : L.H.S. = \(2sin2xcos3x + sin2x\over{2cos3x.cos2x + 2cos3x + 2cos^2x}\) = \(sin2x[2cos3x+1]\over {2[cos3x(cos2x+1)+(cos^2x)]}\) = \(sin2x[2cos3x+1]\over {2[cos3x(2cos^2x)+(cos^2x)]}\) = \(sin2x[2cos3x+1]\over {2cos^2x(2cos3x+1)}\) = tanx Similar Questions Evaluate sin78 – sin66 – sin42 + sin6. If A + B + C = \(3\pi\over 2\), then cos2A + cos2B + cos2C is equal to Find the maximum value of […]
\(sin5x + sin2x – sinx\over {cos5x + 2cos3x + 2cos^x + cosx}\) is equal to Read More »