What is the General Solution of \(cos \theta\) = \(cos \alpha\) ?
Solution : The general solution of \(cos \theta\) = \(cos \alpha\) is given by \(\theta\) = \(2n\pi \pm \alpha\), n \(\in\) Z. Proof : We have, \(cos \theta\) = \(cos \alpha\) \(\implies\) \(cos \theta\) – \(cos \alpha\) = 0 \(\implies\) -\(2 sin ({\theta + \alpha\over 2}) sin({\theta – \alpha\over 2})\) = 0 \(\implies\) \(sin ({\theta […]
What is the General Solution of \(cos \theta\) = \(cos \alpha\) ? Read More »