If \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are three non zero vectors such that \(\vec{a}\times\vec{b}\) = \(\vec{c}\) and \(\vec{b}\times\vec{c}\) = \(\vec{a}\), prove that \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are mutually at right angles and |\(\vec{b}\)| = 1 and |\(\vec{c}\)| = |\(\vec{a}\)|

Solution :

\(\vec{a}\times\vec{b}\) = \(\vec{c}\) and \(\vec{b}\times\vec{c}\) = \(\vec{a}\)

\(\implies\)  \(\vec{c}\perp\vec{a}\) , \(\vec{c}\perp\vec{b}\) and \(\vec{a}\perp\vec{b}\), \(\vec{a}\perp\vec{c}\)

\(\implies\)  \(\vec{a}\perp\vec{b}\), \(\vec{b}\perp\vec{c}\) and \(\vec{c}\perp\vec{a}\)

\(\implies\)  \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are mutually perpendicular vectors.

Again, \(\vec{a}\times\vec{b}\) = \(\vec{c}\) and \(\vec{b}\times\vec{c}\) = \(\vec{a}\)

\(\implies\) |\(\vec{a}\times\vec{b}\)| = |\(\vec{c}\)| and |\(\vec{b}\times\vec{c}\)| = |\(\vec{a}\)|

\(\implies\)  \(|\vec{a}||\vec{b}|sin{\pi\over 2}\) = |\(\vec{c}\)| and \(|\vec{b}||\vec{c}|sin{\pi\over 2}\) = |\(\vec{a}\)|  (\(\because\) \(\vec{a}\perp\vec{b}\) and \(\vec{b}\perp\vec{c}\))

\(\implies\)  \(|\vec{a}||\vec{b}|\) = |\(\vec{c}\)| and \(|\vec{b}||\vec{c}|\) = |\(\vec{a}\)|

\(\implies\)  \({|\vec{b}|}^2\) |\(\vec{c}\)| = |\(\vec{c}\)|

\(\implies\)  \({|\vec{b}|}^2\) = 1

\(\implies\)  \(|\vec{b}|\) = 1

putting in \(|\vec{a}||\vec{b}|\) = |\(\vec{c}\)|

\(\implies\)  \(|\vec{a}|\) = |\(\vec{c}\)|


Similar Questions

Find the angle between the vectors with the direction ratios proportional to 4, -3, 5 and 3, 4, 5.

Find dot product of vectors \(\vec{a}\) = \(2\hat{i}+2\hat{j}-\hat{k}\) and \(\vec{b}\) = \(6\hat{i}-3\hat{j}+2\hat{k}\)

For any three vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) prove that [\(\vec{a}\) + \(\vec{b}\) \(\vec{b}\) + \(\vec{c}\) \(\vec{c}\) + \(\vec{a}\)] = 2[\(\vec{a}\) \(\vec{b}\) \(\vec{c}\)]

Find the vector equation of a line which passes through the point A (3, 4, -7) and B (1, -1, 6)

Find the vector of magnitude 5 which are perpendicular to the vectors \(\vec{a}\) = \(2\hat{i} + \hat{j} – 3\hat{k}\) and \(\vec{b}\) = \(\hat{i} – 2\hat{j} + \hat{k}\)

Leave a Comment

Your email address will not be published. Required fields are marked *