Solution :
Let I = \(\int\) \(tan^{-1}\sqrt{x}\).1 dx
By Applying integration by parts,
Taking \(tan^{-1}\sqrt{x}\) as first function and 1 as second function. Then
I = \(tan^{-1}\sqrt{x}\) \(\int\) 1 dx – \(\int\) {\(d\over dx\)\(tan^{-1}\sqrt{x}\) \(\int\) 1 dx } dx
I = x\(tan^{-1}\sqrt{x}\) – \(\int\) \(1\over 2(1+x)\sqrt{x}\) . x dx
Let \(\sqrt{x}\) = t
\(1\over 2\sqrt{x}\) dx = dt \(\implies\) dx = 2t dt
\(\implies\) I = x\(tan^{-1}\sqrt{x}\) – \(\int\) \(t^2\over t^2 + 1\) dt
\(\implies\) I = x\(tan^{-1}\sqrt{x}\) – \(\int\) dt + \(\int\) \(1\over 1 + t^2\)
\(\implies\) I = x\(tan^{-1}\sqrt{x}\) – t + \(tan^{-1}t\) + C
Hence, I = x\(tan^{-1}\sqrt{x}\) – \(\sqrt{x}\) + \(tan^{-1}\sqrt{x}\) + C
Similar Questions
What is the integration of x tan inverse x dx ?
Evaluate : \(\int\) \(cos^4xdx\over {sin^3x{(sin^5x + cos^5x)^{3\over 5}}}\)