Solution :
The general solution of tan2θ = tan2α is given by θ = nπ±α, n ∈ Z.
Proof :
We have, tan2θ =tan2α
⟹ 1–tan2θ1+tan2θ =1–tan2α1+tan2α
⟹ cos2θ = cos2α
⟹ 2θ = 2nπ±2α, n ∈ Z.
⟹ θ = nπ±α, n ∈ Z.
The general solution of tan2θ = tan2α is given by θ = nπ±α, n ∈ Z.
Proof :
We have, tan2θ =tan2α
⟹ 1–tan2θ1+tan2θ =1–tan2α1+tan2α
⟹ cos2θ = cos2α
⟹ 2θ = 2nπ±2α, n ∈ Z.
⟹ θ = nπ±α, n ∈ Z.