Here you will learn what is the formula of sin 2A in terms of sin and cos and also in terms of tan with proof and examples.
Let’s begin –
Sin 2A Formula
(i) In Terms of Cos and Sin :
Sin 2A = 2 sin A cos A
Proof :
We have,
Sin (A + B) = sin A cos B + cos A sin B
Replacing B by A,
⟹ sin 2A = sin A cos A + cos A sin A
⟹ sin 2A = 2 sin A cos A
We can also write above relation in terms of angle A/2, just replace A by A/2, we get
sin A = 2sin(A2)cos(A2)
(ii) Sin 2A Formula in Terms of Tan :
Sin 2A = 2tanA1+tan2A
Proof :
We have,
sin 2A = 2 sin A cos A
⟹ sin 2A = 2sinAcosAsin2A+cos2A
[ ∵ sin2A+cos2A = 1 ]
Now, Dividing numerator and denominator by cos2A,
⟹ sin 2A = 2sinAcosAcos2Asin2A+cos2Acos2A
⟹ sin 2A = 2tanA1+tan2A
We can also write above relation in terms of angle A/2, just replace A by A/2, we get
sin A = 2tan(A2)1+tan2(A2)
Example : Find the value of Sin 120 ?
Solution : We Know that sin 60 = √32 and cos 60 = 12
By using above formula,
sin 120 = 2 sin 60 cos 60 = 2 × √32 × 12
⟹ sin 120 = √32
Example : If sin A = 35, where 0 < A < 90, find the value of sin 2A ?
Solution : We have,
sin A = 35 where 0 < A < 90 degrees
∴ cos2A = 1 – sin2A
⟹ cos A = √1–sin2A = √1–925 = 45
By using above formula,
sin 2A = 2 sin A cos A = 2 × 35 × 45
⟹ sin 2A = 2425