In this post you will learn what is the formula for cos (A + B) with examples.
Cos (A + B) Formula :
The formula of cos(A + B) is cos A cos B – sin A sin B.
Example : If sin A = \(3\over 5\) and cos B = \(9\over 41\), find the value of cos (A + B).
Solution : We have,
sin A = \(3\over 5\) and cos B = \(9\over 41\)
\(\therefore\) cos A = \(\sqrt{1 – sin^2 A}\) and sin B = \(\sqrt{1 – cos^2 B}\)
\(\implies\) cos A = \(\sqrt{1 – {9\over 25}}\) = \(4\over 5\) and sin B = \(\sqrt{1 – {81\over 1681}}\) = \(40\over 41\)
Now, By using above formula,
cos (A + B) = cos A cos B – sin A sin B
= \(4\over 5\) \(\times\) \(9\over 41\) – \(3\over 5\) \(\times\) \(40\over 41\) = \(-84\over 205\)
Example : Find the value of cos 75.
Solution : cos 75 = cos (45 + 30)
By using above formula,
cos (45 + 30) = cos 45 cos 30 – sin 45 sin 30
\(\implies\) cos 75 = \(1\over \sqrt{2}\) \(\times\) \(\sqrt{3}\over 2\) – \(1\over \sqrt{2}\) \(\times\) \(1\over 2\)
\(\implies\) cos 75 = \(\sqrt{3} – 1\over 2\sqrt{2}\)