Processing math: 100%

Cos 2A Formula – Proof and Examples

Here you will learn what is the formula of cos 2A in terms of sin and cos and also in terms of tan with proof and examples.

Let’s begin –

Cos 2A Formula :

(i) In Terms of Cos and Sin

Given below are all the formulas for cos 2A.

(i) cos 2A = cos2Asin2A

(ii) cos 2A = 2cos2A1    or,    1 + cos 2A = 2cos2A

(iii) cos 2A = 12sin2A    or,    1 – cos 2A = 2sin2A

Proof :

(i) We have,

Cos (A + B) = cos A cos B – sin A sin B

Replacing B by A,

cos 2A = cos A cos A + sin A sin A

cos 2A = cos2Asin2A

(ii) We have,

cos 2A = cos2Asin2A

cos 2A = cos2A1cos2A

cos 2A = 2cos2A1

Again, cos 2A = 2cos2A1

1 + cos 2A = 2cos2A

(iii) We have,

cos 2A = cos2Asin2A

cos 2A = 1sin2Asin2A

cos 2A = 12sin2A

Again, cos 2A = 12sin2A

1 – cos 2A = 2ain2A

We can also write above relation in terms of angle A/2, just replace A by A/2, we get

(i) cos A = cos2(A2)sin2(A2)

(ii) cos A = 2cos2(A2)1    or,    1 + cos A = 2cos2(A2)

(iii) cos A = 12sin2(A2)    or,    1 – cos A = 2sin2(A2)

(ii) Cos 2A Formula in Terms of Tan :

Cos 2A = 1tan2A1+tan2A

Proof :

We have,

cos 2A = cos2Asin2A

cos 2A = cos2Asin2Asin2A+cos2A

[   sin2A+cos2A = 1 ]

Now, Dividing numerator and denominator by cos2A,

  cos 2A = cos2Asin2Acos2Asin2A+cos2Acos2A

cos 2A = 1tan2A1+tan2A

We can also write above relation in terms of angle A/2, just replace A by A/2, we get

cos A = 1tan2(A2)1+tan2(A2)

Example : Find the value of Cos 120 ?

Solution : We Know that sin 60 = 32 and cos 60 = 12

By using above formula,

cos 120 = cos260sin260 = 1434

  cos 120 = 12

Example : If sin A = 35, where 0 < A < 90, find the value of cos 2A ?

Solution : We have,

sin A = 35 where 0 < A < 90 degrees

cos2A = 1 – sin2A

cos A = 1sin2A = 1925 = 45

By using above formula,

cos 2A = cos2Asin2A = 1625925

  cos 2A = 725

Leave a Comment

Your email address will not be published. Required fields are marked *