Here you will learn what is the formula of cos 2A in terms of sin and cos and also in terms of tan with proof and examples.
Let’s begin –
Cos 2A Formula :
(i) In Terms of Cos and Sin
Given below are all the formulas for cos 2A.
(i) cos 2A = cos2A – sin2A
(ii) cos 2A = 2cos2A–1 or, 1 + cos 2A = 2cos2A
(iii) cos 2A = 1–2sin2A or, 1 – cos 2A = 2sin2A
Proof :
(i) We have,
Cos (A + B) = cos A cos B – sin A sin B
Replacing B by A,
⟹ cos 2A = cos A cos A + sin A sin A
⟹ cos 2A = cos2A – sin2A
(ii) We have,
cos 2A = cos2A – sin2A
⟹ cos 2A = cos2A – 1–cos2A
⟹ cos 2A = 2cos2A–1
Again, cos 2A = 2cos2A–1
⟹ 1 + cos 2A = 2cos2A
(iii) We have,
cos 2A = cos2A – sin2A
⟹ cos 2A = 1–sin2A – sin2A
⟹ cos 2A = 1−2sin2A
Again, cos 2A = 1−2sin2A
⟹ 1 – cos 2A = 2ain2A
We can also write above relation in terms of angle A/2, just replace A by A/2, we get
(i) cos A = cos2(A2) – sin2(A2)
(ii) cos A = 2cos2(A2)–1 or, 1 + cos A = 2cos2(A2)
(iii) cos A = 1–2sin2(A2) or, 1 – cos A = 2sin2(A2)
(ii) Cos 2A Formula in Terms of Tan :
Cos 2A = 1–tan2A1+tan2A
Proof :
We have,
cos 2A = cos2A – sin2A
⟹ cos 2A = cos2A–sin2Asin2A+cos2A
[ ∵ sin2A+cos2A = 1 ]
Now, Dividing numerator and denominator by cos2A,
⟹ cos 2A = cos2A–sin2Acos2Asin2A+cos2Acos2A
⟹ cos 2A = 1–tan2A1+tan2A
We can also write above relation in terms of angle A/2, just replace A by A/2, we get
cos A = 1–tan2(A2)1+tan2(A2)
Example : Find the value of Cos 120 ?
Solution : We Know that sin 60 = √32 and cos 60 = 12
By using above formula,
cos 120 = cos260 – sin260 = 14 – 34
⟹ cos 120 = −12
Example : If sin A = 35, where 0 < A < 90, find the value of cos 2A ?
Solution : We have,
sin A = 35 where 0 < A < 90 degrees
∴ cos2A = 1 – sin2A
⟹ cos A = √1–sin2A = √1–925 = 45
By using above formula,
cos 2A = cos2A – sin2A = 1625 – 925
⟹ cos 2A = 725