Here you will learn some trigonometry examples for better understanding of trigonometry concepts.
Example 1 : \(sin5x + sin2x – sinx\over {cos5x + 2cos3x + 2cos^x + cosx}\) is equal to –
Solution : L.H.S. = \(2sin2xcos3x + sin2x\over{2cos3x.cos2x + 2cos3x + 2cos^2x}\)
= \(sin2x[2cos3x+1]\over {2[cos3x(cos2x+1)+(cos^2x)]}\)
= \(sin2x[2cos3x+1]\over {2[cos3x(2cos^2x)+(cos^2x)]}\)
= \(sin2x[2cos3x+1]\over {2cos^2x(2cos3x+1)}\) = tanx
Example 2 : Prove that : \(2cos2A+1\over {2cos2A-1}\) = tan(\(60^{\circ}\) + A)tan(\(60^{\circ}\) – A)
Solution : R.H.S. = tan(\(60^{\circ}\) + A)tan(\(60^{\circ}\) – A)
= (\(tan60^{\circ}+tanA\over {1-tan60^{\circ}tanA}\))(\(tan60^{\circ}-tanA\over {1+tan60^{\circ}tanA}\))
= (\(\sqrt{3}+tanA\over {1-\sqrt{3}tanA}\))(\(\sqrt{3}-tanA\over {1+\sqrt{3}tanA}\))
= \(3-tan^2A\over{1-3tan^2A}\) = \(3cos^2A-sin^2A\over {cos^2A-3sin^2A}\) = \(2cos^2A+cos^2A-2sin^2A+sin^2A\over {2cos^2A-2sin^2A-sin^2A-cos^2A}\)
= \(2(cos^2A-sin^2A)+cos^2A+sin^2A\over {2(cos^2A-sin^2A)-(sin^2A+cos^2A)}\)
= \(2cos2A+1\over {2cos2A-1}\) = R.H.S
Example 3 : If A + B + C = \(3\pi\over 2\), then cos2A + cos2B + cos2C is equal to-
Solution : cos2A + cos2B + cos2C = 2cos(A+B)cos(A-B)+cos2C
= 2cos(\(3\pi\over 2\) – C)cos(A-B) + cos2C \(\because\) A + B + C = \(3\pi\over 2\)
= -2sinC cos(A-B) + 1 – 2\(sin^2C\) = 1 – 2sinC[cos(A-B)+sinC]
= 1 – 2sinC[cos(A-B) + sin(\(3\pi\over 2\)-(A+B))]
= 1 – 2sinC[cos(A-B)-cos(A+B)]
= 1 – 4sinA sinB sinC
Practice these given trigonometry examples to test your knowledge on concepts of trigonometry.