Here you will learn some scalar and vector examples for better understanding of scalar and vector concepts.
Example 1 : Find the vector of magnitude 5 which are perpendicular to the vectors →a = 2ˆi+ˆj–3ˆk and →b = ˆi–2ˆj+ˆk.
Solution : Unit vectors perpendicular to →a & →b = ±→a×→b|→a×→b|
∴ →a×→b = |ˆiˆjˆk21−312−2| = −5ˆi–5ˆj–5ˆk
∴ Unit Vectors = ± −5ˆi–5ˆj–5ˆk5√3
Hence the required vectors are ± 5√33(ˆi+ˆj+ˆk)
Example 2 : If →a, →b, →c are three non zero vectors such that →a×→b = →c and →b×→c = →a, prove that →a, →b, →c are mutually at right angles and |→b| = 1 and |→c| = |→a|
Solution : →a×→b = →c and →b×→c = →a
⟹ →c⊥→a , →c⊥→b and →a⊥→b, →a⊥→c
⟹ →a⊥→b, →b⊥→c and →c⊥→a
⟹ →a, →b, →c are mutually perpendicular vectors.
Again, →a×→b = →c and →b×→c = →a
⟹ |→a×→b| = |→c| and |→b×→c| = |→a|
⟹ |→a||→b|sinπ2 = |→c| and |→b||→c|sinπ2 = |→a| (∵ →a⊥→b and →b⊥→c)
⟹ |→a||→b| = |→c| and |→b||→c| = |→a|
⟹ |→b|2 |→c| = |→c|
⟹ |→b|2 = 1
⟹ |→b| = 1
putting in |→a||→b| = |→c|
⟹ |→a| = |→c|
Example 3 : For any three vectors →a, →b, →c prove that [→a + →b →b + →c →c + →a] = 2[→a →b →c]
Solution : We have [→a + →b →b + →c →c + →a]
= {(→a + →b)×(→b + →c)}.(→c + →a)
= {→a×→b + →a×→c + →b×→b + →b×→c}.(→c + →a) {→b×→b = 0}
= {→a×→b + →a×→c + →b×→c}.(→c + →a)
= (→a×→b).→c + (→a×→c).→c + (→b×→c).→c + (→a×→b).→a + (→a×→c).→a + (→b×→c).→a
= [→a →b →c] + 0 + 0 + 0 + 0 + [→b →c →a]
= [→a →b →c] + [→a →b →c] = 2[→a →b →c]
Practice these given scalar and vector examples to test your knowledge on concepts of scalar and vectors.