If \(\displaystyle{\lim_{x \to \infty}}\)(\({x^3+1\over x^2+1}-(ax+b)\)) = 2, then find the value of a and b.

Solution : \(\displaystyle{\lim_{x \to \infty}}\)(\({x^3+1\over x^2+1}-(ax+b)\)) = 2 \(\implies\) \(\displaystyle{\lim_{x \to \infty}}\)\(x^3(1-a)-bx^2-ax+(1-b)\over x^2+1\) = 2 \(\implies\) \(\displaystyle{\lim_{x \to \infty}}\)\(x(1-a)-b-{a\over x}+{(1-b)\over x^2}\over 1+{1\over x^2}\) = 2 \(\implies\) 1 – a = 0, -b = 2 \(\implies\) a = 1, b = -2 Similar Questions Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \(x^3 cotx\over {1-cosx}\) Evaluate : \(\displaystyle{\lim_{x \to […]

If \(\displaystyle{\lim_{x \to \infty}}\)(\({x^3+1\over x^2+1}-(ax+b)\)) = 2, then find the value of a and b. Read More »

Solve the equation : 2\(tan^{-1}({2x+1})\) = \(cos^{-1}x\)

Solution : Here, 2\(tan^{-1}({2x+1})\) = \(cos^{-1}x\) cos(2\(tan^{-1}({2x+1})\)) = x  { We Know cos2x = \({1-tan^2x\over {1+tan^2x}}\)} \(\therefore\)  \({{1-{(2x+1)}^2}\over {1-{(2x+1)}^2}}\) = x   \(\implies\)   (1 – 2x – 1)(1 + 2x + 1) = x(\(4x^2 + 4x + 2\)) \(\implies\)  -2x.2(x + 1) = 2x(\(2x^2 + 2x + 1\))  \(\implies\)  2x(\(2x^2 + 2x + 1 + 2x

Solve the equation : 2\(tan^{-1}({2x+1})\) = \(cos^{-1}x\) Read More »

Prove that : \(sin^{-1}{12\over 13}\) + \(cot^{-1}{4\over 3}\) + \(tan^{-1}{63\over 16}\) = \(\pi\)

Solution : We have, \(sin^{-1}{12\over 13}\) + \(cot^{-1}{4\over 3}\) + \(tan^{-1}{63\over 16}\) = \(tan^{-1}{12\over 5}\) + \(tan^{-1}{3\over 4}\) + \(tan^{-1}{63\over 16}\) = \(\pi\) + \(tan^{-1}({{{12\over 5} + {3\over 4}}\over {1 – {12\over 5} \times {3\over 4}}})\) + \(tan^{-1}{63\over 16}\) = \(\pi\) + \(tan^{-1}{63\over (-16)}\) + \(tan^{-1}{63\over 16}\) = \(\pi\) – \(tan^{-1}{63\over 16}\) + \(tan^{-1}{63\over 16}\)

Prove that : \(sin^{-1}{12\over 13}\) + \(cot^{-1}{4\over 3}\) + \(tan^{-1}{63\over 16}\) = \(\pi\) Read More »

Evaluate \(sin^{-1}(sin10)\)

Solution : We know that \(sin^{-1}(sinx)\) = x, if \(-\pi\over 2\) \(\le\) x \(\le\) \(\pi\over 2\) Here, x = 10 radians which does not lie between -\(\pi\over 2\) and \(\pi\over 2\) But, \(3\pi\) – x i.e. \(3\pi\) – 10 lie between -\(\pi\over 2\) and \(\pi\over 2\) Also, sin(\(3\pi\) – 10) = sin 10 \(\therefore\)  \(sin^{-1}(sin10)\)

Evaluate \(sin^{-1}(sin10)\) Read More »

Prove that : \(cos^{-1}{12\over 13}\) + \(sin^{-1}{3\over 5}\) = \(sin^{-1}{56\over 65}\)

Solution : We have, L.H.S. = \(cos^{-1}{12\over 13}\) + \(sin^{-1}{3\over 5}\) = \(tan^{-1}{5\over 12}\) + \(tan^{-1}{3\over 4}\) \(\because\) [ \(cos^{-1}{12\over 13}\) = \(tan^{-1}{5\over 12}\) & \(sin^{-1}{3\over 5}\) = \(tan^{-1}{3\over 4}\) ] L.H.S. = \(tan^{-1}({{{5\over 12} + {3\over 4}}\over {1 – {5\over 12}.{3\over 4}}})\) = \(tan^{-1}{56\over 33}\) R.H.S. = \(sin^{-1}{56\over 65}\) = \(tan^{-1}{56\over 33}\) L.H.S =

Prove that : \(cos^{-1}{12\over 13}\) + \(sin^{-1}{3\over 5}\) = \(sin^{-1}{56\over 65}\) Read More »

Find the value of \(sin^{-1}({-\sqrt{3}\over 2})\) + \(cos^{-1}(cos({7\pi\over 6}))\).

Solution : \(sin^{-1}({-\sqrt{3}\over 2})\) = – \(sin^{-1}({\sqrt{3}\over 2})\) = \(-\pi\over 3\) \(cos^{-1}(cos({7\pi\over 6}))\) = \(cos^{-1}(cos({2\pi – {5\pi\over 6}}))\) = \(cos^{-1}(cos({5\pi\over 6}))\) = \(5\pi\over 6\) Hence \(sin^{-1}({-\sqrt{3}\over 2})\) + \(cos^{-1}(cos({7\pi\over 6}))\) = \(-\pi\over 3\) + \(5\pi\over 6\) = \(\pi\over 2\) Similar Questions Solve the equation : 2\(tan^{-1}({2x+1})\) = \(cos^{-1}x\) Prove that : \(sin^{-1}{12\over 13}\) + \(cot^{-1}{4\over

Find the value of \(sin^{-1}({-\sqrt{3}\over 2})\) + \(cos^{-1}(cos({7\pi\over 6}))\). Read More »

Prove that \(\int_{0}^{\pi/2}\) log(sinx)dx = \(\int_{0}^{\pi/2}\) log(cosx)dx = -\(\pi\over 2\)log 2.

Solution : Let I = \(\int_{0}^{\pi/2}\) log(sinx)dx    …….(i) then I = \(\int_{0}^{\pi/2}\) \(log(sin({\pi\over 2}-x))\)dx = \(\int_{0}^{\pi/2}\) log(cosx)dx     …….(ii) Adding (i) and (ii), we get 2I = \(\int_{0}^{\pi/2}\) log(sinx)dx + \(\int_{0}^{\pi/2}\) log(cosx)dx = \(\int_{0}^{\pi/2}\) (log(sinx)dx + log(cosx)) \(\implies\) \(\int_{0}^{\pi/2}\) log(sinxcosx)dx = \(\int_{0}^{\pi/2}\) \(log({2sinxcosx\over 2})\)dx = \(\int_{0}^{\pi/2}\) \(log({sin2x\over 2})\)dx = \(\int_{0}^{\pi/2}\) log(sin2x)dx – \(\int_{0}^{\pi/2}\) log(2)dx

Prove that \(\int_{0}^{\pi/2}\) log(sinx)dx = \(\int_{0}^{\pi/2}\) log(cosx)dx = -\(\pi\over 2\)log 2. Read More »

Evaluate : \(\int\) \(cos^4xdx\over {sin^3x{(sin^5x + cos^5x)^{3\over 5}}}\)

Solution : I = \(\int\) \(cos^4xdx\over {sin^3x{(sin^5x + cos^5x)^{3\over 5}}}\) = \(\int\) \(cos^4xdx\over {sin^6x{(1 + cot^5x)^{3\over 5}}}\) = \(\int\) \(cot^4xcosec^2xdx\over {{(1 + cot^5x)^{3\over 5}}}\) Put \(1+cot^5x\) = t \(5cot^4xcosec^2x\)dx = -dt = -\(1\over 5\) \(\int\) \(dt\over {t^{3/5}}\) = -\(1\over 2\) \(t^{2/5}\) + C = -\(1\over 2\) \({(1+cot^5x)}^{2/5}\) + C Similar Questions What is the integration

Evaluate : \(\int\) \(cos^4xdx\over {sin^3x{(sin^5x + cos^5x)^{3\over 5}}}\) Read More »

Evaluate : \(\int\) \(dx\over {3sinx + 4cosx}\)

Solution : I = \(\int\) \(dx\over {3sinx + 4cosx}\) = \(\int\) \(dx\over {3[{2tan{x\over 2}\over {1+tan^2{x\over 2}}}] + 4[{1-tan^2{x\over 2}\over {1+tan^2{x\over 2}}}]}\) = \(\int\) \(sec^2{x\over 2}dx\over {4+6tan{x\over 2}-4tan^2{x\over 2}}\) let \(tan{x\over 2}\) = t, \(\therefore\)  \({1\over 2}sec^2{x\over 2}\)dx = dt so I = \(\int\) \(2dt\over {4+6t-4t^2}\) = \(1\over 2\) \(\int\) \(dt\over {1-(t^2-{3\over 2}t})\) = \(1\over 2\)

Evaluate : \(\int\) \(dx\over {3sinx + 4cosx}\) Read More »

Find the asymptotes of the hyperbola \(2x^2 + 5xy + 2y^2 + 4x + 5y\) = 0. Find also the general equation of all the hyperbolas having the same set of asymptotes.

Solution : Let \(2x^2 + 5xy + 2y^2 + 4x + 5y + k\) = 0 be asymptotes. This will represent two straight line so \(abc + 2fgh – af^2 – bg^2 – ch^2\) = 0 \(\implies\) 4k + 25 – \(25\over 2\) – 8 – \(25\over 4\)k = 0 \(\implies\) k = 2 \(\implies\)

Find the asymptotes of the hyperbola \(2x^2 + 5xy + 2y^2 + 4x + 5y\) = 0. Find also the general equation of all the hyperbolas having the same set of asymptotes. Read More »