Evaluate the given log : \(81^{l\over {log_5 3}}\) + \(27^{log_9 36}\) + \(3^{4\over {log_7 9}}\).
Solution : \(81^{log_3 5}\) + \(3^{3log_9 36}\) + \(3^{4log_9 7}\) \(\implies\) \(3^{4log_3 5}\) + \(3^{log_3 {(36)}^{3/2}}\) + \(3^{log_3 {7}^2}\) = 625 + 216 + 49 = 890. Similar Questions Solve for x : \(2^{x + 2}\) > \(({1\over 4})^{1\over x}\). Find the value of \(2log{2\over 5}\) + \(3log{25\over 8}\) – \(log{625\over 128}\). If \(log_a x\) […]