Find the equations of the tangent and the normal at the point ‘t’ on the curve x = \(a sin^3 t\), y = \(b cos^3 t\).
Solution : We have, x = \(a sin^3 t\), y = \(b cos^3 t\) \(\implies\) \(dx\over dt\) = \(3a sin^2t cos t\) and, \(dy\over dt\) = \(-3b cos^2t sin t\) \(\therefore\) \(dy\over dx\) = \(dy/dt\over dx/dt\) = \(-b\over a\) \(cos t\over sin t\) So, the equation of the tangent at the point ‘t’ is y […]