Integrate \(x^2 + x – 1\over x^2 – 1\) with respect to x.
Solution : \(\int\) \(x^2 + x – 1\over x^2 – 1\) dx = \(\int\) (\(x^2 – 1\over x^2 – 1\) + \(x\over x^2 – 1\))dx = \(\int\) 1 dx + \(\int\) \(x\over x^2 – 1\)) dx Let \(x^2 – 1\) = t \(\implies\) 2x dx = dt = x + \(\int\) \(dt\over 2t\) = x […]
Integrate \(x^2 + x – 1\over x^2 – 1\) with respect to x. Read More »