What is the General Solution of \(tan \theta\) = \(tan \alpha\) ?

Solution : The general solution of \(tan \theta\) = \(tan \alpha\) is given by \(\theta\) = \(n\pi + \alpha\),  n \(\in\) Z. Proof : We have, \(tan \theta\) = \(tan \alpha\) \(\implies\)  \(sin \theta\over cos \theta\) = \(sin \alpha\over cos \alpha\) \(\implies\)  \(sin \theta cos \alpha\) – \(cos \theta sin \alpha\) = 0 \(\implies\)  \(sin

What is the General Solution of \(tan \theta\) = \(tan \alpha\) ? Read More »

What is the General Solution of \(cos \theta\) = \(cos \alpha\) ?

Solution : The general solution of \(cos \theta\) = \(cos \alpha\) is given by \(\theta\) = \(2n\pi \pm \alpha\),  n \(\in\) Z. Proof : We have,  \(cos \theta\) = \(cos \alpha\) \(\implies\)  \(cos \theta\) – \(cos \alpha\) = 0 \(\implies\)   -\(2 sin ({\theta + \alpha\over 2}) sin({\theta – \alpha\over 2})\) = 0 \(\implies\)  \(sin ({\theta

What is the General Solution of \(cos \theta\) = \(cos \alpha\) ? Read More »

What is the General Solution of \(sin \theta\) = \(sin \alpha\) ?

Solution : The general solution of \(sin \theta\) = \(sin \alpha\) is given by \(\theta\) = \(n\pi + (-1)^n \alpha\),  n \(\in\) Z. Proof : We have,  \(sin \theta\) = \(sin \alpha\) \(\implies\)  \(sin \theta\) – \(sin \alpha\) = 0 \(\implies\)   \(2 sin ({\theta – \alpha\over 2}) cos({\theta + \alpha\over 2})\) = 0 \(\implies\)  \(sin

What is the General Solution of \(sin \theta\) = \(sin \alpha\) ? Read More »

Solve : \(\sqrt{3} cos \theta\) + \(sin \theta\) = \(\sqrt{2}\)

Solution : We have, \(\sqrt{3} cos \theta\) + \(sin \theta\) = \(\sqrt{2}\)            ………….(i) This is of the form \(a cos\theta\) + \(b sin \theta\) = c, where a = \(\sqrt{3}\), b = 1 and c = \(\sqrt{2}\). Let a = \(r cos\alpha\) and b = \(r sin\alpha\). Then, \(\sqrt{3}\) =

Solve : \(\sqrt{3} cos \theta\) + \(sin \theta\) = \(\sqrt{2}\) Read More »

General Solution of the Equation of form \(a cos\theta\) + \(b sin \theta\) = c

General Solution of the equation \(a cos\theta\) + \(b sin \theta\) = c, where a, b, c \(\in\) R such that | c | \(\le\) \(\sqrt{a^2 + b^2}\). To solve this type of equations, we first reduce them in the form \(cos \theta\) = \(cos \alpha\),  or  \(sin \theta\) = \(sin \alpha\). The following algorithm

General Solution of the Equation of form \(a cos\theta\) + \(b sin \theta\) = c Read More »

What is the General Solution of \(sin^2 \theta\) =\(sin^2 \alpha\) ?

Solution : The general solution of \(sin^2 \theta\) = \(sin^2 \alpha\) is given by \(\theta\) = \(n\pi \pm \alpha\), n \(\in\) Z. Proof : We have, \(sin^2 \theta\) =\(sin^2 \alpha\) \(\implies\)  \(2 sin^2 \theta\) =\(2 sin^2 \alpha\) \(\implies\)  \(1 – cos 2\theta\) = \(1 – cos 2\alpha\) \(\implies\)   \(cos 2\theta\) = \(cos 2\alpha\) \(\implies\)  \(2\theta\)

What is the General Solution of \(sin^2 \theta\) =\(sin^2 \alpha\) ? Read More »

What is the General Solution of \(cos^2 \theta\) =\(cos^2 \alpha\) ?

Solution : The general solution of \(cos^2 \theta\) = \(cos^2 \alpha\) is given by \(\theta\) = \(n\pi \pm \alpha\), n \(\in\) Z. Proof : We have, \(cos^2 \theta\) =\(cos^2 \alpha\) \(\implies\)  \(2 cos^2 \theta\) =\(2 cos^2 \alpha\) \(\implies\)  \(1 + cos 2\theta\) = \(1 + cos 2\alpha\) \(\implies\)   \(cos 2\theta\) = \(cos 2\alpha\) \(\implies\)  \(2\theta\)

What is the General Solution of \(cos^2 \theta\) =\(cos^2 \alpha\) ? Read More »