Here you will learn some limits examples for better understanding of limit concepts.
Example 1 : If limx→∞(x3+1x2+1−(ax+b)) = 2, then find the value of a and b.
Solution : limx→∞(x3+1x2+1−(ax+b)) = 2
⟹ limx→∞x3(1−a)−bx2−ax+(1−b)x2+1 = 2
⟹ limx→∞x(1−a)−b−ax+(1−b)x21+1x2 = 2
⟹ 1 – a = 0, -b = 2 ⟹ a = 1, b = -2
Example 2 : Evaluate : limx→0 (2+x)sin(2+x)−2sin2x
Solution : limx→0 2(sin(2+x)−sin2)+xsin(2+x)x
= limx→0(2.2.cos(2+x2)sinx2x + sin(2+x))
= limx→02cos(2+x2)sinx2x2 + limx→0sin(2+x)
= 2cos2 + sin2
Example 3 : Evaluate : limx→0 xln(1+2tanx)1−cosx
Solution : limx→0 xln(1+2tanx)1−cosx
= limx→0 xln(1+2tanx)1−cosxx2.x2.2tanx2tanx
= 4
Example 4 : Evaluate : limx→∞ (7x2+15x2−1)x51−x3
Solution : Here f(x) = 7x2+15x2−1
ϕ(x) = x51−x3 = x2x31−x3 = x21x3−1
∴ limx→∞ f(x) = 75 & limx→∞ ϕ(x) → – ∞
⟹ limx→∞ (f(x))ϕ(x) = (75)−∞ = 0
Practice these given limits examples to test your knowledge on concepts of limits.