Here you will learn some inverse trignometric function examples for better understanding of inverse trigonometric function concepts.
Example 1 : Find the value of sin−1(−√32) + cos−1(cos(7π6)).
Solution : sin−1(−√32) = – sin−1(√32) = −π3
cos−1(cos(7π6)) = cos−1(cos(2π–5π6)) = cos−1(cos(5π6)) = 5π6
Hence sin−1(−√32) + cos−1(cos(7π6)) = −π3 + 5π6 = π2
Example 2 : Prove that : cos−11213 + sin−135 = sin−15665
Solution : We have, L.H.S. = cos−11213 + sin−135 = tan−1512 + tan−134
∵ [ cos−11213 = tan−1512 & sin−135 = tan−134 ]
L.H.S. = tan−1(512+341–512.34) = tan−15633
R.H.S. = sin−15665 = tan−15633
L.H.S = R.H.S. Hence Proved.
Example 3 : Evaluate sin−1(sin10)
Solution : We know that sin−1(sinx) = x, if −π2 ≤ x ≤ π2
Here, x = 10 radians which does not lie between -π2 and π2
But, 3π – x i.e. 3π – 10 lie between -π2 and π2
Also, sin(3π – 10) = sin 10
∴ sin−1(sin10) = sin−1(sin(3π–10) = (3π – 10)
Example 4 : Prove that : sin−11213 + cot−143 + tan−16316 = π
Solution : We have, A = sin−11213 + cot−143 + tan−16316
A = tan−1125 + tan−134 + tan−16316
⟹ A = π + tan−1(125+341–125×34) + tan−16316
⟹ A = π + tan−163(−16) + tan−16316
= π – tan−16316 + tan−16316
= π
Example 5 : Solve the equation : 2tan−1(2x+1) = cos−1x
Solution : Here, 2tan−1(2x+1) = cos−1x
cos(2tan−1(2x+1)) = x { We Know cos2x = 1−tan2x1+tan2x}
∴ 1−(2x+1)21−(2x+1)2 = x ⟹ (1 – 2x – 1)(1 + 2x + 1) = x(4x2+4x+2)
⟹ -2x.2(x + 1) = 2x(2x2+2x+1) ⟹ 2x(2x2+2x+1+2x+2) = 0
⟹ x = 0 or 2x2+4x+3 = 0 { No Solution }
Verify x = 0
2tan−1(1) = cos−1(1) ⟹ π2 = π2
∴ x = 0 is only the solution.
Practice these given inverse trignometric function examples to test your knowledge on concepts of inverse trigonometric function.