Processing math: 100%

Inverse Trignometric Function Examples

Here you will learn some inverse trignometric function examples for better understanding of inverse trigonometric function concepts.

Example 1 : Find the value of sin1(32) + cos1(cos(7π6)).

Solution : sin1(32) = – sin1(32) = π3

cos1(cos(7π6)) = cos1(cos(2π5π6)) = cos1(cos(5π6)) = 5π6

Hence sin1(32) + cos1(cos(7π6)) = π3 + 5π6 = π2



Example 2 : Prove that : cos11213 + sin135 = sin15665

Solution : We have, L.H.S. = cos11213 + sin135 = tan1512 + tan134

  [ cos11213 = tan1512 & sin135 = tan134 ]

L.H.S. = tan1(512+341512.34) = tan15633

R.H.S. = sin15665 = tan15633

L.H.S = R.H.S.   Hence Proved.



Example 3 : Evaluate sin1(sin10)

Solution : We know that sin1(sinx) = x, if π2 x π2

Here, x = 10 radians which does not lie between -π2 and π2

But, 3π – x i.e. 3π – 10 lie between -π2 and π2

Also, sin(3π – 10) = sin 10

  sin1(sin10) = sin1(sin(3π10) = (3π – 10)



Example 4 : Prove that : sin11213 + cot143 + tan16316 = π

Solution : We have, A = sin11213 + cot143 + tan16316

A = tan1125 + tan134 + tan16316

A = π + tan1(125+341125×34) + tan16316

A = π + tan163(16) + tan16316

= πtan16316 + tan16316

= π



Example 5 : Solve the equation : 2tan1(2x+1) = cos1x

Solution : Here, 2tan1(2x+1) = cos1x

cos(2tan1(2x+1)) = x       { We Know cos2x = 1tan2x1+tan2x}

    1(2x+1)21(2x+1)2 = x     (1 – 2x – 1)(1 + 2x + 1) = x(4x2+4x+2)

  -2x.2(x + 1) = 2x(2x2+2x+1)     2x(2x2+2x+1+2x+2) = 0

  x = 0   or   2x2+4x+3 = 0   { No Solution }

Verify       x = 0

2tan1(1) = cos1(1)     π2 = π2

    x = 0 is only the solution.


Practice these given inverse trignometric function examples to test your knowledge on concepts of inverse trigonometric function.

Leave a Comment

Your email address will not be published. Required fields are marked *