Here you will learn proof of integration of tanx or tan x and examples based on it.
Let’s begin –
Integration of Tanx or Tan x
The integration of tanx is – log |cos x| + C or log |sec x| + C
i.e. ∫ (tanx) dx = – log |cos x| + C or,
∫ (tanx) dx = log |sec x| + C
Proof :
Let I = ∫ (tan x) dx
Then, I = ∫ sinxcosx dx
Let cos x = t
Then, d(cos x) = dt ⟹ -sin x dx = dt
⟹ dx = −dtsinx
Putting cos x = t, and dx = −dtsinx, we get
I = ∫ sinxcosx × −dtsinx
= ∫ −1t dt = – log |t| + C
= – log |cos x| + C
And cos x = 1secx
⟹ I = -log |1/sec x| + C = -log|sec−1x| + C = log |sec x| + C
Hence, ∫ (tanx) dx = – log |cos x| + C or, ∫ (tanx) dx = log |sec x| + C
Example : Evaluate : ∫ √1−cos2x1+cos2x dx
Solution : We have,
I = ∫ √1−cos2x1+cos2x dx
By Trigonometry formulas,
1 – cos 2x = 2sin2x and 1 + cos 2x = 2cos2x
⟹ I = ∫ √2sin2x2cos2x dx
⟹ I = ∫ sinxcosx dx
{∵ sinxcosx = tan x }
⟹ I = ∫ tan x dx
⟹ I = log |sec x| + C = – log |cos x| + C
Related Questions
What is the Differentiation of tan x ?