Here you will learn Integration integration formulas for class 12.
Let’s begin –
Integration Formula for Class 12
(i) ∫ (ax+b)n dx = (ax+b)n+1a(n+1) + C ; n ≠ -1
(ii) ∫ dxax+b dx = 1a ln|ax+b| + C
(iii) ∫ eax+b dx = 1aeax+b + C or ∫ ex = ex + C
(iv) ∫ apx+q dx = 1p apx+qlna + C, (a > 0)
(v) ∫ sinx dx = -cosx + C
(vi) ∫ cosx dx = sinx + C
(vii) ∫ tanx dx = ln|secx| + C
(viii) ∫ cotx dx = ln|sinx| + C
(ix) ∫ sec2x dx = tanx + C
(x) ∫ cosec2x dx = -cotx + C
(xi) ∫ cosecx.cotx dx = -cosecx + C
(xii) ∫ secx.tanx dx = secx + C
(xiii) ∫ secx dx = ln|secx+tanx| + C = ln|tan(π4 + x2)| + C
(xiv) ∫ cosecx dx = ln|cosecx-cotx| + C = ln|tanx2| = -ln|cosecx+cotx| + C
(xv) ∫ dx√a2−x2 = sin−1xa + C
(xvi) ∫ dxa2+x2 = 1a tan−1xa + C
(xvii) ∫ dxx√x2−a2 = 1a sec−1xa + C
(xviii) ∫ dx√x2+a2 = ln[x+√x2+a2] + C
(xix) ∫ dx√x2−a2 = ln[x+√x2−a2] + C
(xx) ∫ dxa2−x2 = 12a ln|a+xa−x| + C
(xxi) ∫ dxx2−a2 = 12a ln|x−ax+a| + C
(xxii) ∫ √a2−x2 dx = x2√a2−x2 + a22 sin−1xa + C
(xxii) ∫ √x2+a2 dx = x2√x2+a2 + a22 ln[x+√x2+a2] + C
(xxii) ∫ √x2−a2 dx = x2√x2−a2 – a22 ln[x+√x2−a2] + C
Hope you learnt integration formulas for class 12, learn more concepts of integration and practice more questions to get ahead in competition. Good Luck!