Here you will learn some integration examples for better understanding of integration concepts.
Example 1 : Evaluate : ∫ dx3sinx+4cosx
Solution : I = ∫ dx3sinx+4cosx = ∫ dx3[2tanx21+tan2x2]+4[1−tan2x21+tan2x2] = ∫ sec2x2dx4+6tanx2−4tan2x2
let tanx2 = t, ∴ 12sec2x2dx = dt
so I = ∫ 2dt4+6t−4t2 = 12 ∫ dt1−(t2−32t) = 12 ∫ dt2516−(t−34)2
= 12 12(54) ln|54+(t−34)54−(t−34)| + C = 15 ln|1+2tanx24−2tanx2| + C
Example 2 : Evaluate : ∫ cos4xdxsin3x(sin5x+cos5x)35
Solution : I = ∫ cos4xdxsin3x(sin5x+cos5x)35
= ∫ cos4xdxsin6x(1+cot5x)35 = ∫ cot4xcosec2xdx(1+cot5x)35
Put 1+cot5x = t
5cot4xcosec2xdx = -dt
= -15 ∫ dtt3/5 = -12 t2/5 + C
= -12 (1+cot5x)2/5 + C
Example 3 : Prove that ∫π/20 log(sinx)dx = ∫π/20 log(cosx)dx = -π2log 2.
Solution : Let I = ∫π/20 log(sinx)dx …(i)
then I = ∫π/20 log(sin(π2−x))dx = ∫π/20 log(cosx)dx …(ii)
Adding (i) and (ii), we get
2I = ∫π/20 log(sinx)dx + ∫π/20 log(cosx)dx = ∫π/20 (log(sinx)dx + log(cosx))dx
⟹ ∫π/20 log(sinxcosx)dx = ∫π/20 log(2sinxcosx2)dx
= ∫π/20 log(sin2x2)dx = ∫π/20 log(sin2x)dx – ∫π/20 log(2)dx
= ∫π/20 log(sin2x)dx – (log 2)(x)π/20
⟹ 2I = ∫π/20 log(sin2x)dx – π2log 2 …(iii)
Let I1 = ∫π/20 log(sin2x)dx, putting 2x = t, we get
I1 = ∫π0 log(sint)dt2 = 12 ∫π0 log(sint)dt = 12 2∫π/20 log(sint)dt
I1 = ∫π/20 log(sinx)dx
∴ (iii) becomes; 2I = I – π2log 2
Hence ∫π/20 log(sinx)dx = – π2log 2
Practice these given integration examples to test your knowledge on concepts of integration.