Here you will learn integration by partial fraction formula and integration of irrational functions.
Let’s begin –
Integration by Partial Fraction Formula
(i) Integration of Rational Functions
S.No | form of rational function | form of partial fraction |
---|---|---|
1 | px2+qx+r(x−a)(x−b)(x−c) | Ax−a + Bx−b + Cx−c |
2 | px2+qx+r(x−a)2(x−b) | Ax−a + B(x−a)2 + Cx−b |
3 | px2+qx+r(x−a)(x2+bx+c) | Ax−a + Bx+Cx2+bx+c |
Example : Evaluate ∫ x(x−2)(x−5) dx
Solution : We have, ∫ x(x−2)(x−5) dx
Let x(x−2)(x−5) = Ax−2 + Bx−5
or x = A(x+5) + B(x-2)
by comparing the coefficients, we get
A = 2/7 and B = 5/7 so that
∫ x(x−2)(x−5) dx = 27 ∫dxx−2 + 57 ∫dxx+5
= 27 ln|x-2| + 57 ln|x+5| + C
Example : Evaluate ∫ 2x(x2+1)(x2+2) dx
Solution : Let I = ∫ 2x(x2+1)(x2+2) dx
Putting x2 = t and 2xdx = dt, we get
I = ∫ dt(t+1)(t+2)
Let 1(t+1)(t+2) = At+1 + Bt+2 …….(i)
⟹ 1 = A(t+2) + B(t+1) ……..(ii)
Putting t = -2 in (ii), we obtain B = -1
Putting t = -1 in (ii), we obtain A = 1
Putting value of A and B in (i), we get
1(t+1)(t+2) = 1t+1 – 1t+2
I = ∫ 1(t+1)(t+2)
⟹ I = ∫ 1t+1dt – ∫ 1t+2dt
⟹ I = log|t+1| – log|t+2| + C
log|x2+1| – log|x2+2| + C
(ii) Integration of Irrational Functions
(a) ∫ dx(ax+b)√px+q & ∫ dx(ax2+bx+c)√px+q; put px+q = t2
(b) ∫ dx(ax+b)√px2+qx+r; put ax+b = 1t; ∫ dx(ax2+b)√px2+q; put x = 1t