Here you will learn some function examples for better understanding of function concepts.
Example 1 : Find the range of the given function log√2(2−log2(16sin2x+1))
Solution : Now 1 ≤ 16sin2x + 1) ≤ 17
∴ 0 ≤ log2(16sin2x+1) ≤ log217
∴ 2 – log217 ≤ 2 – log2(16sin2x+1) ≤ 2
Now consider 0 < 2 – log2(16sin2x+1) ≤ 2
∴ -∞ < log√2(2−log2(16sin2x+1)) ≤ log√22 = 2
∴ the range is (-∞, 2]
Example 2 : Find the inverse of the function f(x) = loga(x+√(x2+1)); a > 1 and assuming it to be an onto function.
Solution : Given f(x) = loga(x+√(x2+1))
∴ f'(x) = logae√1+x2 > 0
which is strictly increasing functions.
Thus, f(x) is injective, given that f(x) is onto. Hence the given function f(x) is invertible.
Interchanging x & y
⟹ loga(y+√(y2+1)) = x
⟹ y+√(y2+1) = ax ……..(1)
and √(y2+1) – y = a−x ………..(2)
From (1) and (2), we get y = 12(ax–a−x) or f−1(x) = 12(ax–a−x).
Example 3 : Find the period of the function f(x) = ex−[x]+|cosπx|+|cos2πx|+…..+|cosnπx|
Solution : f(x) = ex−[x]+|cosπx|+|cos2πx|+…..+|cosnπx|
Period of x – [x] = 1
Period of |cosπx| = 1
Period of |cos2πx| = 12
……………………………….
Period of |cosnπx| = 1n
So period of f(x) will be L.C.M of all period = 1.
Practice these given function examples to test your knowledge on concepts of function.