Find the value of \(sin^{-1}({-\sqrt{3}\over 2})\) + \(cos^{-1}(cos({7\pi\over 6}))\).

Solution :

\(sin^{-1}({-\sqrt{3}\over 2})\) = – \(sin^{-1}({\sqrt{3}\over 2})\) = \(-\pi\over 3\)

\(cos^{-1}(cos({7\pi\over 6}))\) = \(cos^{-1}(cos({2\pi – {5\pi\over 6}}))\) = \(cos^{-1}(cos({5\pi\over 6}))\) = \(5\pi\over 6\)

Hence \(sin^{-1}({-\sqrt{3}\over 2})\) + \(cos^{-1}(cos({7\pi\over 6}))\) = \(-\pi\over 3\) + \(5\pi\over 6\) = \(\pi\over 2\)


Similar Questions

Solve the equation : 2\(tan^{-1}({2x+1})\) = \(cos^{-1}x\)

Prove that : \(sin^{-1}{12\over 13}\) + \(cot^{-1}{4\over 3}\) + \(tan^{-1}{63\over 16}\) = \(\pi\)

Evaluate \(sin^{-1}(sin10)\)

Prove that : \(cos^{-1}{12\over 13}\) + \(sin^{-1}{3\over 5}\) = \(sin^{-1}{56\over 65}\)

The value of \(tan^{-1}(1)\) + \(cos^{-1}({-1\over 2})\) + \(sin^{-1}({-1\over 2})\) is equal to

Leave a Comment

Your email address will not be published. Required fields are marked *