Find the domain of the function f(x) = \(1\over x + 2\).

Solution :

We have, f(x) = \(1\over x + 2\)

Clearly f(x) assumes real values for all real values for all x except for the values of x satisfying x + 2 = 0  i.e. x = -2.

Hence, Domain(f) = R – {-2}


Similar Questions

If y = 2[x] + 3 & y = 3[x – 2] + 5, then find [x + y] where [.] denotes greatest integer function.

Find the domain and range of function f(x) = \(x-2\over 3-x\).

Find the period of the function f(x) = \(e^{x-[x]+|cos\pi x|+|cos2\pi x|+ ….. + |cosn\pi x|}\)

Find the inverse of the function f(x) = \(log_a(x + \sqrt{(x^2+1)})\); a > 1 and assuming it to be an onto function.

Find the range of the function \(log_{\sqrt{2}}(2-log_2(16sin^2x+1))\)

Leave a Comment

Your email address will not be published. Required fields are marked *