Processing math: 100%

Equation of Line Parallel to a Line

Here you will learn what is the equation of line parallel to a given line with examples.

Let’s begin –

Equation of Line Parallel to a Line

The equation of the line parallel to a given line ax + by + c = 0 is

ax + by + λ,

where λ is a constant.

Proof :

Let m be the slope of the line ax + by + c = 0, Then,

m = -ab

Since the required line is parallel to the given line, the slope of the required line is also m.

Let c1 be the y-intercept of the required line. Then, its equation is

y = mx + c1

y = -abx + c1

ax + by – bc1 = 0

ax + by + λ = 0, where λ = -bc1 = constant.

Note : To write a line parallel to any given line we keep the expression containing x and y same and simply replace the given constant by a new constant λ. The value of λ can be determined by some given condition.

Example : Find the equation of line which is parallal to the line 3x – 2y + 5 = 0 and passes through the point (5, -6).

Solution :  The line parallel to the line 3x – 2y + 5 = 0 is

3x – 3y + λ = 0                    …………..(i)

This passes through (5, -6)

3 × 5 – 2 × -6 + λ = 0

λ = -27.

Putting λ = -27 in  (i) we get, 

3x – 3y – 27 = 0, which is the required equation of line.

Leave a Comment

Your email address will not be published. Required fields are marked *