Loading [MathJax]/jax/output/HTML-CSS/jax.js

Cos 3A Formula – Proof and Examples

Here you will learn what is the formula of cos 3A with proof and examples based on it.

Let’s begin –

Cos 3A Formula

The formula of cos 3A is 4cos3A3cosA.

Proof :

We have,

cos (A + B) = cos A cos B – sin A sin B

Replacing B by 2A,

cos 3A = cos A cos 2A – sin A sin 2A

cos 3A = cos A (2cos2A1) + sin A (2 sin A cos A)

[    cos 2A = 2cos2A1 & sin 2A = 2 sin A cos A ]

  cos 3A = 2cos3A – cos A + 2 cos A (sin2A)

  cos 3A = 2cos3A – cos A + 2 cos A (1cos2A)

Hence, cos 3A = 4cos3A – 3 cos A

We can also write above relation of angle A in terms of angle A/3, just replace A by A/3, we get

cos A = 4cos3A33cosA3

Example : Prove that : 8cos3π36sinπ9 = 1.

Solution : We have,

L.H.S = 2(8cos3π36sinπ9) = 2cos(3×π9)

L.H.S = 2cosπ3 = 1 = R.H.S

Example : Prove that cos A cos (60 – A) cos (60 + A) = 14 cos 3A.

Solution : We have,

L.H.S = cos A cos (60 – A) cos (60 + A)

L.H.S = cos A (cos260sin2A)

[ By using this formula, cos (A + B) cos (A – B) = cos2Asin2B  above ]

L.H.S = cos A (14sin2A) = cos A (14(1cos2A))

L.H.S = cos A (34+cos2A)

L.H.S = 14 cos A (3+4cos2A) = 14(4cos3A – 3 cos A)

Since 4cos3A – 3 cos A = cos 3A,

L.H.S = 14 cos 3A = R.H.S

Leave a Comment

Your email address will not be published. Required fields are marked *