Here you will learn what is the formula of cos 3A with proof and examples based on it.
Let’s begin –
Cos 3A Formula
The formula of cos 3A is 4cos3A–3cosA.
Proof :
We have,
cos (A + B) = cos A cos B – sin A sin B
Replacing B by 2A,
⟹ cos 3A = cos A cos 2A – sin A sin 2A
⟹ cos 3A = cos A (2cos2A–1) + sin A (2 sin A cos A)
[ ∵ cos 2A = 2cos2A–1 & sin 2A = 2 sin A cos A ]
⟹ cos 3A = 2cos3A – cos A + 2 cos A (sin2A)
⟹ cos 3A = 2cos3A – cos A + 2 cos A (1–cos2A)
Hence, cos 3A = 4cos3A – 3 cos A
We can also write above relation of angle A in terms of angle A/3, just replace A by A/3, we get
cos A = 4cos3A3 – 3cosA3
Example : Prove that : 8cos3π3 – 6sinπ9 = 1.
Solution : We have,
L.H.S = 2(8cos3π3 – 6sinπ9) = 2cos(3×π9)
L.H.S = 2cosπ3 = 1 = R.H.S
Example : Prove that cos A cos (60 – A) cos (60 + A) = 14 cos 3A.
Solution : We have,
L.H.S = cos A cos (60 – A) cos (60 + A)
⟹ L.H.S = cos A (cos260–sin2A)
[ By using this formula, cos (A + B) cos (A – B) = cos2A – sin2B above ]
⟹ L.H.S = cos A (14 – sin2A) = cos A (14–(1–cos2A))
⟹ L.H.S = cos A (−34+cos2A)
L.H.S = 14 cos A (−3+4cos2A) = 14(4cos3A – 3 cos A)
Since 4cos3A – 3 cos A = cos 3A,
⟹ L.H.S = 14 cos 3A = R.H.S