Find the value of \(2log{2\over 5}\) + \(3log{25\over 8}\) – \(log{625\over 128}\).
Solution : \(2log{2\over 5}\) + \(3log{25\over 8}\) + \(log{128\over 625}\) = \(log{2^2\over 5^2}\) + \(log({5^2\over 2^3})^3\) + \(log{2^7\over 5^4}\) = \(log({2^2\over 5^2}{5^6\over 2^9}{2^7\over 5^4})\) = log 1 = 0 Similar Questions Solve for x : \(2^{x + 2}\) > \(({1\over 4})^{1\over x}\). Evaluate the given log : \(81^{l\over {log_5 3}}\) + \(27^{log_9 36}\) + \(3^{4\over […]
Find the value of \(2log{2\over 5}\) + \(3log{25\over 8}\) – \(log{625\over 128}\). Read More »