Processing math: 100%

Function Questions

Find the period of the function f(x) = ex[x]+|cosπx|+|cos2πx|+..+|cosnπx|

Solution : f(x) = ex[x]+|cosπx|+|cos2πx|+..+|cosnπx| Period of x – [x] = 1 Period of |cosπx| = 1 Period of |cos2πx| = 12 ………………………………. Period of |cosnπx| = 1n So period of f(x) will be L.C.M of all period = 1. Similar Questions If y

Find the period of the function f(x) = ex[x]+|cosπx|+|cos2πx|+..+|cosnπx| Read More »

Find the inverse of the function f(x) = loga(x+(x2+1)); a > 1 and assuming it to be an onto function.

Solution : Given f(x) = loga(x+(x2+1)) f'(x) = logae1+x2 > 0 which is strictly increasing functions. Thus, f(x) is injective, given that f(x) is onto. Hence the given function f(x) is invertible. Interchanging x & y   loga(y+(y2+1)) = x   y+(y2+1) = ax ……..(1) and  (y2+1)

Find the inverse of the function f(x) = loga(x+(x2+1)); a > 1 and assuming it to be an onto function. Read More »

Find the range of the function log2(2log2(16sin2x+1))

Solution : Now 1 16sin2x + 1) 17 0 log2(16sin2x+1) log217 2 – log217 2 – log2(16sin2x+1) 2 Now consider 0 < 2 – log2(16sin2x+1) 2 - < log2(2log2(16sin2x+1)) log22 = 2 the range is (-, 2] Similar Questions If y = 2[x] + 3 & y

Find the range of the function log2(2log2(16sin2x+1)) Read More »